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Abstract

We present a self-consistent formulation of 3-D parametric dislocation dynamics (PDD) with the boundary element

method (BEM) to describe dislocation motion, and hence microscopic plastic flow in finite volumes. We develop

quantitative measures of the accuracy and convergence of the method by considering a comparison with known analytical

solutions. It is shown that the method displays absolute convergence with increasing the number of quadrature points on

the dislocation loop and the surface mesh density. The error in the image force on a screw dislocation approaching a free

surface is shown to increase as the dislocation approaches the surface, but is nevertheless controllable. For example, at a

distance of one lattice parameter from the surface, the relative error is less than 5% for a surface mesh with an element size

of 1000� 2000 (in units of lattice parameter), and 64 quadrature points. The Eshelby twist angle in a finite-length cylinder

containing a coaxial screw dislocation is also used to benchmark the method. Finally, large scale 3-D simulation results of

single slip behavior in cylindrical microcrystals are presented. Plastic flow characteristics and the stress–strain behavior of

cylindrical microcrystals under compression are shown to be in agreement with experimental observations. It is shown that

the mean length of dislocations trapped at the surface is the dominant factor in determining the size effects on hardening of

single crystals. The influence of surface image fields on the flow stress is finally explored. It is shown that the flow stress is

reduced by as much as 20% for small single crystals of size less than 0:15mm.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Understanding dislocation interaction with free and internal surfaces (e.g. grain boundaries, precipitate
surfaces, twin boundaries, voids, bubbles, and cracks) is essential in a wide range of applications, such as
fatigue crack nucleation (Basinski et al., 1983; Mughrabi, 1992), thin film deformation (Arzt et al., 2001), and
size effects on small sample plasticity (Greer et al., 2005; Dimiduk et al., 2005). Discrete dislocation dynamics
(DDD) has been developed to simulate plastic deformation at the meso-scale by direct numerical solution of
the equations of motion for dislocation ensembles. The approach has been successfully used in many
applications at the nano- and microscales (e.g. Kubin et al., 1992; Zbib et al., 1998; Schwarz, 1999; Ghoniem
e front matter r 2007 Elsevier Ltd. All rights reserved.
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et al., 2000). However, the majority of these approaches are for bulk crystals, with a few exceptions that
consider the influence of free or internal surfaces (e.g. Fivel et al., 1996; Schwarz, 1999; Kukta and Freund,
1998; Ghoniem and Sun, 1999; Khraishi et al., 2001; Martinez and Ghoniem, 2002; Weygand et al., 2002).
Careful assessments of the accuracy associated with these numerical methods would be helpful, especially
because of the singular behavior of the elastic field of dislocations at free surfaces and interfaces.

Elasticity methods to account for the influence of free surfaces or interfaces may be grouped into the
following categories:
1.
 Superposition methods, where regular solutions obtained by numerical methods (e.g. the finite element,
boundary element Weygand et al., 2002; Martinez and Ghoniem, 2002, or the Boussinesque point force
solution on a free surface, Verdier et al., 1998) are superposed on singular solutions for dislocations in
infinite media to satisfy traction equilibrium at the free surface.
2.
 Approximation techniques, based on Lothe’s solution (Lothe et al., 1982; Schwarz, 1999), or by assuming
that interfaces are rigid (von Blanckenhagen et al., 2001).
3.
 The surface dislocation method, where a surface dislocation loop distribution is determined so as to satisfy
interfacial or free surface traction conditions at collocation points (Khraishi et al., 2001).
4.
 Elasticity methods, based on solutions of a dislocation segment near a free surface (Gosling and Willis,
1994; Fivel et al., 1996).

The boundary element method (BEM) belongs to the first category; but it is advantageous over the finite
element method (FEM) for a number of reasons. In the BEM approach, discretization takes place only on the
surface rather than throughout the entire volume, with an obvious reduction in the number of degrees of freedom
and in computational requirements. Stresses and displacements at interior points are calculated more accurately
in the BEM, because all field variables are discretized on the surface and no further approximation is imposed on
the solution at interior points. Furthermore, in the FEM, interpolation of field variables is required at locations
not coinciding with Gaussian integration points. On the other hand, stresses and displacements in the BEM are
calculated directly at the point of interest without the need for interpolation. One additional and significant
advantage of the BEM is associated with modelling the evolution of surfaces as a result of step, ledge, and crack
formation during plastic deformation. Surface nodes need only be re-discretized every now and then for a
prescribed level of accuracy. This type of flexibility is very difficult to attain with other methods of solution.

The governing differential equations for field quantities in the BEM are transformed into integral identities
over the boundary (surface). These integrals are numerically integrated over the entire surface by dividing it
into surface elements. With specified displacement or traction boundary conditions, a system of linear
algebraic equations is obtained, and the system can be solved with methods of linear algebra.

In this work, we present an implementation of the BEM method in dislocation dynamics simulations to
incorporate the influence of free and internal interfaces on dislocation motion. First, a brief outline of the
theoretical framework of the parametric dislocation dynamics (PDD) and the BEM are given in Section 2. In
Section 3, we develop qualitative measures for the accuracy and convergence of the method by considering a
comparison with two known analytical solutions. The interaction of a screw dislocation with a free surface, as
obtained from the PDD-BEM method for different mesh densities on a free surface, is compared with the
analytical solution. Then the twist angle produced in a cylinder containing a coaxial screw dislocation is
compared with analytical formulas developed by Eshelby.

In Section 4, the developed PDD-BEM method is utilized to examine the size effects of single-slip
behavior in cylindrical microcrystals. The setup of computer simulations for experiments on compression of
micropillars is explained in Section 4.1, and 3-D simulation results are presented and discussed in Section 4.2.
In addition, influence of the image field on the microstructure and flow stress influence of microcrystals is
explored. Finally, conclusions and a discussion are given in Section 5.

2. Consistency of the PDD and the BEMs

The elastic field, forces, and motion of dislocation loops in an infinite medium are computed using the PDD
methodology, developed by Ghoniem and Sun (1999) and Ghoniem et al. (2000). Detailed information about
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the method can be found elsewhere, but for the completeness of the current work we summarize related
information. In this approach, any 3-D dislocation loop of an arbitrary shape is discretized into Nseg curved
parametric segments. The configuration of each segment, j, is completely defined by choosing a set of
generalized coordinates q

j
ik and corresponding shape functions CiðoÞ as follows:

x
ðbÞ
k ðoÞ ¼

X
i

CiðoÞq
ðbÞ
ik , (1)

where x
ðbÞ
k is the Cartesian coordinates of a point on segment b, and o is a parameter that defines the location

of the point on the segment and is in the interval 0pop1. For the present study, we employ cubic spline
segments and thus the generalized coordinates are the position and tangent vectors associated with the
beginning and end of the segments (i.e. at o ¼ 0 and 1, respectively). Following Ghoniem and Sun (1999), the
stress field tensor at any point due to N loop dislocation loops that are divided into Nseg segment can be written
as a fast numerical sum over: quadrature points ð1pgpQmaxÞ associated with weight factors ðwaÞ, loop
segments ð1papNsegÞ, and number of dislocation loops ð1pbpN loopÞ, as follows:

sij ¼
m
4p

XN loop

g¼1

XNseg

b¼1

XQmax

a¼1

bnwa
1

2
R;mppð�jmnx

ðbÞ
i;o þ �imnx

ðbÞ
j;oÞ þ

1

1� n
�kmnðR;ijm � dijR;ppmÞx

ðbÞ
k;o

� �
, (2)

where �ijk is the permutation tensor, m is the shear modulus, n is Poisson’s ratio, bn is the components of the
Burgers vector b, x

ðbÞ
k;o are the parametric derivatives of the Cartesian components which describe the 3-D

dislocation segment b as a function of the parameter o, and R is the radius vector that connects a source
point x

ðbÞ
k on a dislocation loop to the field point at which the stress is being evaluated, and has Cartesian

components Ri, successive partial derivatives R;ijk... and magnitude R.
Following the superposition method developed by Van der Giessen, Needleman and co-workers (Van der

Giessen and Needleman, 1995; Weygand et al., 2002) to introduce boundary conditions in DDD, the total
stress and displacement fields are given as

sij ¼fsij þcsij ,

uij ¼ euij þ buij, ð3Þ

where the ð�Þ fields are the elastic fields in an infinite medium resulting from all dislocation loops given by
Eq. (2), while the ð^Þ fields are the image fields that enforce boundary conditions. To evaluate the image fields

due to external or internal surfaces, the following four steps need to be performed. First, the elastic stress field
in an infinite medium resulting from all dislocation loops is evaluated. The tractions at the surfaces of the finite
crystal due to this stress field are then determined, reversed and placed on the surface as traction boundary
conditions. These traction boundary conditions in addition to any imposed displacement constrains are
employed in BEM to calculate all other unknown surface tractions and displacements. Finally, the image
stress field is calculated, and the result is superimposed as indicated in Eq. (3).

The boundary integral equation (BIE) for the response at any point P due to displacements and tractions
applied at point Q is developed using the reciprocal theory and the fundamental Kelvin problem solutions.
The BIE is given as (Becker, 1992)

cijðPÞujðPÞ ¼

Z
S

UijðP;QÞtjðQÞdS �

Z
S

TijðP;QÞujðQÞdS, (4)

where S is the boundary, cij is a coefficient matrix, which in general is computed by applying rigid body
motion, and Uij and Tij are the displacement and traction kernel, respectively.

Eq. (4) is solved over any closed boundary by dividing the surface into boundary elements, where the
integration is obtained numerically over each element after enforcing the boundary conditions. Once all the
surface displacements and tractions are obtained by solving the above BIE, the image field at any dislocation
point P can then be easily computed for any material with elastic constants Cijkl as follows:

sij ¼

Z
S

GijkðP;QÞtkðQÞdS �

Z
S

HijkðP;QÞukðQÞdS, (5)
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where

GijkðP;QÞ ¼ 1
2
CijlnðUlk;nðP;QÞ þUnk;lðP;QÞÞ,

HijkðP;QÞ ¼ 1
2
CijlnðTlk;nðP;QÞ þ Tnk;lðP;QÞÞ. ð6Þ

Both Eqs. (4) and (5) can be written as a fast numerical sum over: quadrature points ð1pn; spNGaussÞ

associated with weight factors ðwn and wsÞ, number of nodes per boundary element ð1pcpNnÞ and number of
boundary elements ð1pmpNeÞ. For instance, Eq. (5) would be in the form

sijðPÞ ¼
XNe

m¼1

XNn

c¼1

XNGauss

n¼1

XNGauss

s¼1

wnwsGkijðP;QÞNcðx1; x2ÞJðx1;x2ÞtkðQÞ

�
XNe

m¼1

XNn

c¼1

XNGauss

n¼1

XNGauss

s¼1

wnwsHkijðP;QÞNcðx1; x2ÞJðx1;x2ÞukðQÞ, ð7Þ

where the functions Ncðx1;x2Þ are quadratic shape functions and the Jacobian of transformation J is equal toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2

1 þ dx2
2

q
. This fast sum equation (7) is used to calculate the stresses at all dislocation nodes and is added to

the infinite medium solution given by Eq. (2).
Comparing the structure of Eqs. (2) and (7), one can easily note the great degree of similarity and

consistency between the PDD formation (Eq. (2)) and the BEM formulation (Eq. (7)). In the PDD, the fast
sums are carried over quadrature points and the number of segments on each dislocation and the outer
summation is over the number of dislocation loops, while the sums in the BEM are carried over the number of
quadrature points twice and the number of nodes per element and the outer summation is finally performed
over the number of surface elements. Thus, the computational structure of both the PDD and the BEM is
essentially the same. It is therefore convenient to model the effects of surface image forces with the BEM, while
the computational structure of the PDD is unchanged. One possible additional advantage of this
computational structure is the suitability of incorporating acceleration algorithms of conventional particle
methods, and as the Greengard–Rokhlin (1987) fast multi-pole algorithms.

Once the dislocation stress field and the image stress field are obtained the total stress and hence the total
force on each dislocation can be computed and the evolution of the microstructure can be obtained using the
framework of the PDD method.

3. Accuracy and convergence of the method

To determine the accuracy of the numerical method, and to show that the method is numerically
convergent, we will consider two ideal cases with known ‘‘limiting’’ analytical solutions.

3.1. Case 1: screw dislocation parallel to a free surface

Consider a screw dislocation parallel to a free surface of a finite body, and located at a distance l away from
the surface. The exact solution can be obtained by a simple image construction (Hirth and Lothe, 1982). Thus,
the free surface condition (zero traction) can be achieved through the superposition of the stress field of the
original screw dislocation with that of an imaginary (image screw dislocation) of the same strength and of
opposite sign located at a mirror position on the other side of the free surface. The screw dislocation is drawn
towards the surface by a normalized image force equal to

eFeb ¼ �
eb

4pel , (8)

where eF ¼ F=ðmLaÞ is the dimensionless force/unit length on a screw dislocation of length L, eb ¼ b=a is the
dimensionless magnitude of the Burgers vector, el ¼ l=a is the dimensionless distance, and a is the lattice
parameter. To test the present numerical method, we approximate the infinite screw dislocation by a ‘‘very
long’’ segment, 18,000 in length (note that all distances henceforth are dimensionless). Fig. 1a shows the
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Fig. 1. (a) Normalized image force on the screw dislocation (the dashed curve is the analytical solution) versus distance from free surface;

(b) variation of the corresponding relative error with distance from the free surface. The number of quadrature points are kept at 16, while

the surface mesh density is varied: ð�o�Þ 6� 6 elements, ð�}�Þ 8� 8 elements, ð�n�Þ 10� 10 elements, ð� � �Þ 12� 12 elements, and

ð�&�Þ 20� 10 elements.
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normalized image force calculated using the PDD-BEM method on the screw dislocation, placed at various
distances from the free surface. The image force as predicted by the analytical solution given by Eq. (8) is also
shown in Fig. 1a. The dislocation is divided into 90 segments, with 16 quadrature points per segment. The free
surface parallel to the screw dislocation is represented by a surface mesh extending over the dimensions
20; 000� 20; 000. The corresponding relative error between the solution from the PDD-BEM method and the
analytical solution is shown in Fig. 1b.

To determine the convergence rate of the numerical solution and the dependence of the relative error on the
discretization procedure, we increase the number of quadrature integration points on each dislocation segment
to 64 in Fig. 2a, and to 128 in Fig. 2b. The figures display the relative error in the numerical solution (taking
the analytical solution again as a reference). It is clear from these figures that the error converges as the
number of quadrature points is increased. Also, the errors decrease rapidly with increasing the number of
quadrature points, especially as the dislocation gets closer to the free surface. When the dislocation is relatively
far from the free surface (e.g. at distances elb10Þ, the error in image force calculations can be kept below a few
percent with a relatively small number of quadrature points on each segment (e.g. 16). However, when the
dislocation is at a distance, elo10 from the surface, the number of quadrature points needs to be significantly
increased to attain the same level of relative error.

3.2. Case 2: cylinder containing a coaxial screw dislocation

Consider a finite cylinder that has a coaxial screw dislocation. Due to the finite length of the cylinder, the
coaxial screw dislocation will cause the cylinder to twist. Eshelby (1953) worked out an analytical solution
and predicted that two cross-sections of a cylinder containing a coaxial dislocation, will undergo a relative
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Fig. 2. (a) Relative error in the calculated image force for 64 quadrature points versus distance from free surface; (b) variation of the

relative error in the calculated image force for 128 quadrature points with distance from the free surface. The surface mesh density is varied

as follows: ð�n�Þ 6� 6 elements, (–o–) 10� 10 elements, ð� ��Þ 12� 12 elements, and ð�&�Þ 20� 10 elements.
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rotation angle y, given by

y ¼
ebeL
p eR2

, (9)

where eL ¼ L=a is the dimensionless distance between the two cross-sections, and eR ¼ R=a is the dimensionless
radius of the cylinder. This is the so-called Eshelby twist. According to St. Venant’s principle, this elementary
result can only be used at distances greater than 2 eR from the ends.

Here the accuracy and convergence of the PDD-BEM is investigated by computing the deformed shape of a
cylinder containing a coaxial screw dislocation and comparing the results to the analytical solution given by
Eq. (9). Consider a cylinder of radius eR ¼ 500 and length to diameter ratio of 5:1. Fig. 3a shows the surface
mesh for the cylinder free of dislocations. Adding a coaxial screw dislocation to the cylinder and using the
PDD-BEM method we obtain the deformed configuration shown in Fig. 3b. It is observed from the results
that uz, the z-component of the displacement, is discontinuous across the plane defined by y ¼ 0; x40 with

lim
�!0;x40

½uzðx;��Þ � uzðx; �Þ� ¼ bz, (10)

where for the current analysis bz ¼ 0:5 and the dimensionless Burgers vector is equal to eb ¼ ð0; 0; bzÞ. In
addition, the cylinder twists due to the presence of the coaxial screw dislocation. To predict the accuracy of the
PDD-BEM results, the relative twist angle between two cross-sections of the cylinder is compared to the
analytical Eshelby twist given by Eq. (9). The two cross-sections are chosen, in accordance with St. Venant’s
principle, to be located at distances 3 eR and 4 eR from the bottom edge, respectively.

The relative error of the twist angle, for different numbers of surface elements is shown in Fig. 4. For these
results, the screw dislocation is divided into 30 segments with 16 quadrature points per segment. It is clear that
increasing the number of elements, either on the sides of the cylinder or on the top and bottom planes, will
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decrease the relative error in the twist angle. One factor to be considered here is that the numerical method
itself is an approximation of the ‘‘infinitely long’’ cylinder assumption of Eshelby, and hence only relative rates
of convergence can be ascertained by comparing with the reference analytic solution of Eshelby. In addition,
the screw dislocation in our model ends on the top and bottom surfaces. This means that some segments are
less than a few lattice parameters from the surface. Thus, as was discussed in case 1, one can decrease the
relative error in the calculated image forces on these segments, and therefore the relative error in the twist
angle, by increasing the number of quadrature points on such segments.

4. 3-D simulations of single-slip behavior in cylindrical microcrystals

Recently, compression experiments were carried out to study the crystal-size dependence and the behavior
of single-crystal micropillars (Uchic et al., 2004; Greer et al., 2005; Dimiduk et al., 2005; Uchic and Dimiduk,
2005). These characterized experiments can be used to guide the development of predictive plasticity models.
In addition, a number of 2-D and 3-D DDD models have been utilized to study the size-effect dependence of
micropillars (Deshpande et al., 2005; Benzerga and Shaver, 2006; Tang et al., 2007). It is noted that in 2-D
dislocation dynamic methods (Deshpande et al., 2005; Benzerga and Shaver, 2006), key dislocation interaction
mechanisms are either neglected or added in an ad hoc manner. We wish to show here that, in contrast to 3-D
models that ignore surface effects (Tang et al., 2007), image fields arising from the finite geometry of
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micropillars have an important effect on the dislocation microstructure, especially for micropillars having
submicron diameters.

We utilize here the PDD-BEM method to study the single-slip behavior of cylindrical microcrystals. In the
following, we perform large scale 3-D dislocation simulations of the experiments performed by Dimiduk et al.
(2005). In the following subsections, the problem setup and the simulation results are presented and discussed.

4.1. Problem setup

For comparison between simulation results and existing experimental conditions, the problem setup is
chosen to represent the recent experiments of Dimiduk et al. (2005). Fig. 5 shows a schematic of a face-
centered-cubic (FCC) single-crystal micropillar used in the current simulations. A uniform compressive load in
the z direction is imposed on the top surface of the cylinder while the bottom surface is kept fixed.

Experimental observations of Au single-crystal micropillars under compression (Volkert and Lilleodden,
2006) revealed that the resultant stress–strain behavior did not depend on whether single or multiple slip
occurs. Thus, although the loading direction in our simulation would activate multi-slip-systems, we assume in
this work that the single crystal will have the slip-system h0 1 1i (1 1 1) as the only activated slip system. This
assumption may be justified if one considers the low dislocation densities typical of these systems at small
plastic strains. Certainly at higher dislocation densities, one would expect the activation of multiple slip as a
result of the abundance of cross-slip events.

Crystal properties are taken to be that of nickel with a shear modulus m ¼ 76GPa, Poisson’s ratio n ¼ 0:31,
lattice parameter a ¼ 3:524 Å, and Burgers vector magnitude of b ¼ 0:25nm. In addition, the aspect ratio of the
cylinder is fixed at L:D ¼ 3:1 in all current simulations. The spacing between activated slip planes is generated at
random such that all planes remain in the slip zone defined as shown in Fig. 5. Compression loading is
performed under a constant strain rate _e ¼ 200 s�1. Thus, the rate of loading is set by this strain rate such that

_s ¼ Eð_e� _epÞ, (11)

where E is the elastic modulus of the material and _ep is the plastic strain rate that is obtained from the motion of
the dislocations as follows:

_ep ¼ �
1

2V

XNtot

i¼1

liviðni � bi þ bi � niÞ, (12)
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where V is the volume of the simulated crystal and N tot is the total number of dislocation segments. In addition,
li is the length of dislocation segment i having a velocity magnitude vi, a Burgers vector bi, and a slip plane
normal ni.

4.2. Results and discussion

To gain insight into the effects of micropillar size on dislocation microstructure evolution, a statistical
analysis was performed on two distinct micropillar sizes having diameters D ¼ 1:0 and 0:5 mm, respectively.
For each of the two micropillar sizes, 10 different samples having a statistical variation of the initial
microstructure were studied.

The initial microstructure in our current analysis is constructed by randomly distributing Frank–Read (FR)
sources in the bulk of the crystal. The FR source length to the crystal diameter, l=D, is treated as a uniformly
random variable. The distribution was chosen to be a uniform distribution such that ðlminplpDÞ, where
clearly the maximum FR source length, lmax, is bounded by the diameter of the crystal, and the minimum
dislocation length was chosen to be 20 nm.

In our estimate of the minimum FR source length, we utilized the experimentally measured maximum
strength to determine an approximate value for the resolved shear stress on the slip plane. The Schmidt factor
for the slip system we have chosen is about 0.408 and we determined from approximate Orowan-type
calculations that the critical resolved shear stress for an FR source having a length lmin ¼ 20 nm is about
1.0GPa. Thus the maximum applied stress needed to activate an FR source that has this critical resolved shear
stress would be 2.45GPa. This value is several times larger than the maximum flow stress reached in the
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experiments of Dimiduk et al. (2005), which is 400MPa for a micropillar having D ¼ 1:0 mm. Thus, we know
that although FR sources that might have a higher critical resolved shear stress (i.e. having a length smaller
than lminÞ may exist in the crystal, such small pinned dislocation segments will not be activated under the
current conditions.

The engineering stress–strain curves resulting from the simulations of all 10 samples of the two micro-
pillars are shown in Fig. 6. The initial dislocation density in all simulations are in the range
1:6� 1012prp4� 1012 m�2, in agreement with densities reported by Dimiduk et al. (2005). A summary of
the initial mean dislocation source length, the standard deviation, and the computed flow stresses for all
simulated cases are shown in Table 1.
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Fig. 6. Statistical results of the engineering-stress versus engineering-strain curves for two different samples having an aspect ratio of 3:1

and diameters: (a) D ¼ 1:0mm and (b) D ¼ 0:5mm. The arrows point to step formation in the elastic region for some of the samples.
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Table 1

Summary of parameters for D ¼ 1:0 and 0:5mm

Case # D ¼ 1:0mm D ¼ 0:5mm

Mean source Standard Flow stress Mean source Standard Flow stress

length ðmmÞ deviation ðmmÞ (MPa) length ðmmÞ deviation ðmmÞ (MPa)

1 0.55 0.28 251 0.16 0.02 535

2 0.62 0.25 201 0.25 0.04 361

3 0.70 0.18 202 0.24 0.09 370

4 0.63 0.31 207 0.20 0.12 330

5 0.57 0.29 189 0.28 0.06 330

6 0.45 0.25 192 0.28 0.03 437

7 0.39 0.30 218 0.26 0.05 304

8 0.51 0.32 196 0.32 0.09 364

9 0.60 0.21 186 0.22 0.04 333

10 0.42 0.31 189 0.09 0.08 362
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The influence of the micropillar size on the stress–strain behavior and the flow stress is clearly shown in
Fig. 6. The flow stress increases as the size of the sample decreases, and after the flow stress is reached,
essentially no work hardening is observed. Another interesting feature revealed here is the initiation of strain
bursts observed in the elastic region of some of the samples, as indicated by the arrows in Fig. 6. All these
features are in agreement with experimental observations (Dimiduk et al., 2005; Greer et al., 2005).

To understand the mechanisms under which such observations occur, a detailed study of the dislocation
microstructure evolution for all the simulated samples was made. Fig. 7 shows the engineering stress–
engineering strain curve and the microstructure evolution for the micropillar with diameter D ¼ 1:0mm. The
initial dislocation density is r ¼ 2:35� 1012 m�2, the FR source mean length is 0:55mm and the standard
deviation is 0:28mm (case 1 in Table 1). The surface mesh and the micropillar geometry before deformation is
shown in Fig. 8a.

As the load on the micropillar increases beyond an initial threshold, larger size FR sources start expanding
rapidly in the bulk until they interact with the free surface. This results in the termination of the dislocation at
the crystal surface, splitting it into two segments that are pinned only at one end in the bulk while the other
end is free to move on the surface. These singly pinned dislocations, depending on the length as well as the
closeness of the original FR source to the surface, will in general have a different length from that of the FR
source. If the length of these single-ended dislocations is smaller than the initial FR source, and the resolved
shear stress did not reach the critical threshold required for it to continue propagating, then these segments
will get stuck near the surface (Figs. 7b–e). When the strain reaches 0:13%, all larger sources will have
interacted with the surface (i.e. exhausted) and produced shorter segments that need a higher resolved shear
stress to break away from the surface. The initial expansion and interaction with the free surface of these
larger segments is observed as a strain burst on the stress–strain curve. Afterwards, the loading increases
elastically until the resolved shear stress on the largest segment exceeds its threshold value, and it breaks away
from the surface (Fig. 7e). The motion of this dislocation will proceed as long as it does not encounter any
other obstacle (Figs. 7f and g). This is observed on the stress–strain curve as a rapid continuous strain burst
and, in addition, the micropillar will slip and deform continuously. The deformed shape of the micropillar
after 2% strain is shown in Fig. 8b and is in agreement with the deformed shapes observed experimentally by
Dimiduk et al. (2005) on 1:0mm micropillars.

It should be noted that, as FR sources expand and intersect the surface, the resulting single-ended
dislocations will have a length distribution of ð0plpD� lminÞ. Since this resulting distribution is somewhat
similar to the initial FR source distribution and since the stress–strain response is an integrated process of
many stochastic events, the influence of the location of the initial end points on the stress–strain behavior is
minimal.

In addition, as the strain increases and the cylinder slips the length of singly pinned dislocations on the
slipped plane will change which may result in trapping previously activated dislocations or may lead to the
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Fig. 7. (a) Engineering stress–engineering strain curve for the micropillar and (b)–(g) the microstructure evolution at different strains. The

micropillar has an aspect ratio of 3:1 and diameter D ¼ 1:0mm. The initial dislocation density is r ¼ 2:35� 1012 m�2, FR source mean

length is 0:55mm and the standard deviation is 0:28mm.
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activation of other sources. When the slipping of the micropillar results in trapping of previously activated
dislocations, the loading will increase elastically until the threshold stress on the dislocation segment with the
lowest critical resolved shear stress is reached and thus it will break away from the surface and the process
continues in a similar manner as discussed previously.

Such microstructure evolution was observed in all samples simulated for both the 1.0 and the 0:5mm
diameter micropillars. The difference between both sizes was observed to be in the length of the single-ended
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Fig. 8. The 1:0mm diameter micropillar (a) before and (b) after deformation (2% strain). The surface mesh is shown. The initial

dislocation density is r ¼ 2:35� 1012 m�2.
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dislocations trapped at the surface. When the size of the micropillar decreases, the length of the FR sources
will be closer to the size of the micropillar and thus after it expands it will get trapped at the surface with a
smaller length than in the case of micropillars with larger sizes. Thus, these single-ended surface dislocations
will need a higher stress to be activated.

The flow stress for all simulated cases versus the square root of the dislocation density in the cylinder at the
onset of plastic flow is shown in Fig. 9 for micropillar with diameters 1.0 and 0:5mm, respectively. For both
sizes the behavior is observed to be distinct from that of bulk crystals. A decrease in the flow stress is observed
as the square root of the dislocation density increases. This indicates that for small size micropillars, the flow
stress is not controlled by dislocation–dislocation interaction as in the case of bulk crystals, but is controlled
by the activation of the weakest dislocation link trapped at the surface. This can be observed from Fig. 10,
where the flow stress is plotted against the inverse mean dislocation length at the onset of plastic flow
(normalized to the cylinder diameter).

It is clearly seen that the mean length of trapped dislocations on the surface of the crystal is the dominant
factor influencing the size effect on the strength. It is thus possible to rationalize the experimentally observed
size effects based on a statistical variation of the single-ended dislocation source lengths. This supports similar
findings reported by Parthasarathy et al. (2007).

In almost all DD simulations so far, image force effects on microstructure evolution and the flow stress were
neglected. It has been argued that the neglect of image field in 3-D dislocation dynamics allows numerical
efficiency without compromising accuracy. To asses the importance (or lack thereof) of accurately including
the image field of dislocations in DD simulations, three different micropillar sizes having diameters
D ¼ 1:0; 0:5, and 0:15mm were studied. For each size, two simulations were carried out; one that includes the
image field as calculated from the BEM-PDD discussed above, and the other ignores the image field totally.
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The relative difference in the calculated flow stress between both cases as a function of the micropillar
diameter is plotted in Fig. 11.

The image field is observed to affect the microstructure by assisting trapped dislocations in breaking away
from the surface. Thus the flow stress when considering the image field is lowered by the percentages shown in
Fig. 11 from the calculated flow stress when we ignore the image field. The relative difference is calculated to
be 10:05% for the micropillar with diameter D ¼ 1:0mm and increases as the micropillar diameter decreases.
The relative difference is 18.39% for the micropillar with diameter D ¼ 0:15mm. This is due to the fact that for
smaller sizes the surface to volume ratio is larger and thus the image field on the dislocations will be higher
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Fig. 11. The relative difference in the calculated flow stress between DD simulations with and without surface image fields.
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than in the case of larger sizes where the image field is weaker. Thus, for micropillars having large diameters
(greater than 1:0mm) the effect of the image field may be neglected with small errors, while as the diameter of
the sample decreases to the submicron range, the effect of the image field becomes substantial and can no
longer be neglected.

5. Conclusions and discussion

A self-consistent boundary element-dislocation dynamics framework has been established to critically
examine the influence of free surfaces on dislocation motion. By considering special cases for which analytical
solutions are known, it is shown that the method is very accurate for calculating surface image forces on
dislocations. By increasing the surface mesh density for BEM calculations, and the quadrature point density
on dislocation segments, it is shown that the error can be controllably made to be small, and that the
numerical solution displays absolute convergence.

As an application of the current method, the PDD-BEM was utilized to study the size effects and the single-
slip behavior of cylindrical microcrystals through a large scale 3-D dislocation simulations that mimics the
experimental conditions of Dimiduk et al. (2005). The size effects on the flow stress are clearly observed and
the results are in complete agreement with experimental observations. By a thorough study of the
microstructure evolution the observed size effects were rationalized based on a statistical variation of the
length of single-ended dislocation sources in the crystal.

The effect of the image field on the results was shown to increase as the diameter of the micropillar decreases
or as the surface to the volume ratio of the cylinder increases. For larger diameters the image field can be
neglected with small errors, but as the dimensions get smaller (in the range of submicrons) the effect of the
image forces becomes substantial and cannot be neglected.

Finally, it should be noticed that the BEM formulation presented here can be extended to inhomogeneous
materials or problems with rigid inclusions (e.g. precipitate surfaces) with the use of established techniques as
shown by Takahashi and Ghoniem (2007). Thus, coupling between such methods and the current method can
be utilized to model and study the size-effect dependence of micropillar superalloys presented by Uchic et al.
(2004). In addition, our current method can be extended to any system (isotropic or anisotropic) consisting of
any number of materials, where rigid, sliding or friction conditions are imposed at interfaces without
difficulty.
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